人脸识别:技术挑战
1、可见光
不同的光线环境是影响人脸识别准确率的一个主要因素
2、姿态
绝大多数人脸识别算法只能 15 度的人脸姿态变化
3、遮挡
帽子、眼睛、围巾、发型等可能遮挡人脸的因素
4、年龄
针对同一个人不同年龄时期的照片进行人脸识别,在技术上亦是一个挑战。
5、海量人脸库
当人脸库规模达到 100 万以上,对人脸识别算法的识别精度将是一个极大的考研,而且人脸库规模越大,考研越大。
图像质量检测
图像质量的好坏直接影响到识别的效果,图像质量的检测功能能对即将进行比对的照片进行图像质量评估,并给出相应的建议值来辅助识别。
人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
人脸识别系统功能分析人脸识别系统以“人员轨迹查询、身份确认、人员布控”三大业务需求为主线,结合“事前预警、事中布控、事后侦查”应用模式,从“搜人、判人、控人”三个维度规划人像大数据应用系统功能,形成“人员踪迹查询、人员身份研判、人员布控预警”三大业务功能;同时辅以系统管理、移动应用需求,建立对应的“系统安全管理、人像“APP”两大增值功能,将业务应用与人性化管理机制进行有机结合,创新基于人像大数据的综合实战化应用模式。
01人脸管理功能
1)名理。对名单库及库内名单进行管理。支持用户新增、修改、删除名单库,也可以对库内名单进行新增、修改、删除等动作。2)资源管理。对布控点及布控点内的人脸采集摄像机/抓拍相机进行管理,可添加,修改,删除抓拍机。
3)布控管理。支持添加、编辑、撤销布控任务。可添加一条含布控名称、布控对象、布控范围(可地图选点)、分时段阈值、布控原因的布控任务,并可通过输入关键字对人脸布控进行检索。
4)任务管理。支持对上传记录进行显示、查询及删除操作。可显示上传图片的记录,并按姓名、证件号和建模状态查询查看建模的黑名单、总数、成功数和失败数。
02人脸应用功能
可通过多种查询方法,对人员信息、人员抓拍进行数据处理和分析,从而筛选出满足提交的人员信息。
1)实时抓拍。
基于前端高清摄像机或人脸抓拍相机,通过系统或抓拍相机在实时视频中检测人脸,跟踪人脸运动轨迹,截取到清晰的一帧进行储存。并把抓拍人脸照片、经过时间、相机地点信息等记录在路人库中,抓拍到并储存的人脸信息可作为检索数据库使用。支持按树形目标选择抓拍通道,并同时查看一路或多路实时人脸图片抓拍。支持背景图及小图的下载。
2)实时预警(人脸卡口)。
支持抓拍图片与黑名单库的实时比对。支持预警接收的设置,在预警设置里,可选择预警接收的布控任务和布控范围。3)历史预警。支持按布控任务、布控范围、布控对象、相似度、时间、报警确认形式进行单一条件或组合条件的查询。支持设置查询结果按时间或相似度排序。
4)人脸查询。
支持对动态抓拍库、静态名单库的人脸查询。查询照片支持原图查看,详细信息查看,前后视频预览。人脸图像及相关结构化信息可导出成excel文件。
5)以脸搜脸(1:N比对)。
用户可以选择某张人像图片,在抓拍库或者静态名单库中寻找相似度高的人像图片。系统根据相似度高低来排序。待比对的图片可以本地上传,也可以是抓拍图片或者是静态图片。当上传图片过于模糊时,支持用户手动标注加强识别的功能,通过界面手动标注特征点或框选范围,帮助系统识别到准确的人脸位置,提高比对准确率,改善模糊照片的比对效果。
6)人脸查重(N:N比对)。
系统支持针对单个人员库或两个人员库之间的重复人员查询,并返回查重结果。在查重任务进行过程中,可查看任务状态、相关信息等,并对已完成的查重任务进行查看、删除等操作。
7)人脸APP。
支持人脸检索功能,通过拍照上传或者本地图片上传的方式,进行人脸比对,比对成功后,按相似度返回相应的人脸检索结果。
8)人员轨迹分析。
可利用已有的人脸图片或者系统检索出的人脸图片,搜索出一定时间段及监控范围内的相似人脸图片,选择目标人员人脸图片,分析目标人员“从哪里来、到哪里去、沿途经过哪里”。
主要功能特色包括:
1.灵活的系统扩展性
基于先进的分布式系统架构,支持动态扩充人脸匹配服务器,实现千万级甚至亿级海量人脸库的支持。
2.的人脸比对性能
单台人脸匹配服务器每秒可完成 2000 万人次实时比对,从人脸检测到人脸识别耗时不足 200ms。在百万人脸库规模下,人脸比对结果前 10 位的命中率在95%以上
3.对人脸的宽容度高,具备人脸姿态矫正功能,当人脸左右上下倾斜在 25 度以内时不会影响识别结果。
支持基于可见光环境下的人脸识别,人脸识别结果受光线变化影响小。
对于人脸的变化,包括表情、胡须、眼镜、发型、年龄等,算法均具有良好的适应性,不影响识别准确度。
4.支持移动终端
系统客户端可运行在基于 Android 或 iOS 的移动终端上,可通过移动终端进行实时人脸采集与人脸比对。
人脸识别系统具有广泛的应用:人脸识别出入管理系统、人脸识别门禁考勤系统、人脸识别监控管理、人脸识别电脑安全防范、人脸识别照片搜索、人脸识别来访登记、人脸识别ATM机智能视频报警系统、人脸识别监狱智能报警系统、人脸识别RFID智能通关系统、人脸识别公安罪犯追逃智能报警系统等等。
技术原理:
人脸识别内容
人脸识别技术包含三个部分:
(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存储若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
操作简单
系统正常使用时,只需要启动设备,人脸识别通过即可正常驾驶施工升降机。
-/gbaciei/-
http://www.shrrhb.com